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FDR and ROC: Similarities, Assumptions, and Decisions

1. Why FDR and ROC?

It	is	a	privilege	to	have	been	asked	to	introduce	this	collection	of	papers	appearing	
in	Statistica Sinica.	The	papers	 fall	 into	 two	 topical	 areas,	 receiver	 operating	
characteristic	(ROC)	analyses	(Cai	and	Dodd;	Song	and	Zhou)	and	various	flavors	of	
false	discovery	rates	(FDRs)	in	multiple	hypothesis	testing	applications	(Chi	and	Tan;	
Craiu	and	Sun;	Ge,	Sealfon	and	Speed;	Guan,	Wu	and	Zhao;	Sarkar,	Zhou	and	Ghosh).	
The	common	thread	is	“decision-making,”	and	I	congratulate	the	editors	of	Statistica 
Sinica	for	bringing	this	topic	to	the	fore.

There	are	myriads	of	 flavors	of	multiple	hypothesis	 testing,	with	questions	of	
which	resampling	method	to	use	(see	Ge	et	al.	in	this	issue),	and	even	more	broadly,	
which	type	I	error	rate	definition	to	use	(strong,	weak,	familywise,	false	discovery	
rate	or	proportion;	see	Chi	and	Tan	of	this	issue).	These	questions	are	interesting	and	
remain	active	 in	current	areas	of	 research.	However,	 to	make	our	methods	useful,	
we	must	move	toward	answering	the	simple	question	that	every	scientist	has:	Which	
method	is	best?	In	the	case	of	hypothesis	testing	for	gene	expression	data,	for	example,	
scientists	want	to	know	which	genes	are	“interesting,”	and	which	are	“not	interesting,”	
borrowing	Efron’s	(2004)	terminology.	As	in	ROC	analysis	(Cai	and	Dodd;	Song	and	
Zhou),	the	answer	should	involve	both	types	of	decision	errors	(Craiu	and	Sun;	Sarkar	
et	al.).	The	logical	next	step	is	to	consider	losses	resulting	from	both	types	of	errors;	
Sarkar	et	al.	provide	a	good	step	in	this	direction.

2. Specific Comparisons

In	ROC	analysis,	there	is	a	statistical	measure	T	reflecting	a	true	underlying	state	
δ,	with	δ	=1	often	denoting	“diseased”	and	δ	=	0	“not	diseased.”	Goals	are	to	choose	a	
threshold	c	for	making	the	classification	δ	=1(0)	when	T	>	c	(	≤	c	),	and	to	characterize	
the	benefits	of	such	a	procedure.	Hypothesis	testing	has	a	similar	structure:	there	is	a	
statistical	measure	T	reflecting	a	true	underlying	state,	δ,	with	δ	=	0	denoting	“H0	true”	
and	δ	=	1	denoting	“H0	false.”	Goals	are	similar	to	those	for	ROC	analysis.
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Main	differences	are:	(i)	 in	ROC	analysis,	T	 is	an	observation-specific	measure,	
for	example,	level	of	prostate-specific	antigen	(PSA)	in	a	blood	sample	from	a	male	
patient,	whereas	in	hypothesis	testing,	T	 is	an	aggregate	across	all	observations	in	a	
data	set,	for	example,	the	standardized	difference	between	average	PSA	for	treatment	
and	control	groups	of	male	patients;	(ii)	 in	ROC	analysis,	δ is	again	an	observation-
specific	measure,	 for	example,	existence	or	non-existence	of	prostate	cancer	 in	 the	
male	patient	whose	PSA	was	measured,	whereas	in	hypothesis	testing,	δ	is	a	parameter	
governing	the	production	of	 the	existing	data,	for	example,	an	indicator	of	whether	
the	“population	average”	PSA	levels	differ;	and	(iii)	 in	ROC	analysis	the	case	T ≤	c	
is	classified	directly	as	“non-diseased,”	whereas	in	hypothesis	 testing	it	 is	classified	
indirectly	as	“fail	to	reject		H0”.

In	either	case,	 there	 is	a	concern	for	both	types	of	errors,	although	typically	 in	
hypothesis	testing	there	is	a	stronger	emphasis	on	type	I	errors,	simply	because	they	
can	be	estimated	and	controlled	tractably,	while	making	fewer	assumptions.	Concern	
for	 type	II	errors	drives	research	 into	methods	with	 lower	 type	II	error	rates	while	
controlling	type	I	errors.	In	contrast,	ROC	analysis	has	as	its	main	measure	area	under	
the	curve	(AUC),	which	implicitly	treats	both	error	types	symmetrically.

3. Assumptions

With	ROC	analysis,	data	are	available	where	it	is	known	precisely	whether	δ	=	0	
or	δ	=	1	.	Hypothesis	testing	often	puts	δ	=	I(θ	=	0)	where	θ	 is	a	difference	between	
means	such	as	θ = μ1	– μ2 ,	and	it	is	not	possible	to	determine	δ since	θ	is	unobservable.	
The	emphasis	on	Type	 I	errors	occurs	because	T	 |{δ	=	0}	 typically	has	a	known	
distribution	under	minimal	assumptions,	whereas	the	distribution	of	T	|{δ	=	1}	requires	
the	assumption	of	a	specific	value	or	Bayesian	prior	for	θ.	Statisticians	are	often	averse	
to	making	extra	assumptions,	since	 they	 limit	applicability.	However,	with	 limited	
applicability	comes	greater	potential	utility,	as	methods	are	often	much	more	useful	
when	the	assumptions	happen	to	be	true.

As	a	(frequentist)	example,	consider	the	multiple	hypothesis	 testing	application	
with	 two-sample,	m-dimensional	multivariate	data,	 common	 in	gene	expression	

studies,	X X X1,..., ;n
iid

x
F∼ 	Y Y Y1,..., n

iid
y

F∼ ,	with	the	 X ’s	independent	of	the	Y ’s.	Let	

E m( ) ... '( ) ( )X X X
1 1=  µ µ ,	 E m( ) ... '( ) ( )Y Y Y

1 1=  µ µ 	 and	θ µ µj j j= −( ) ( )X Y ,	 	 j =1,...,	m.	
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Hypotheses	are	 H j j0 0:θ = ;	all	of	 the	papers	 in	 this	 issue	devoted	to	FDR	can	be	

applied	to	this	problem,	either	directly	or	indirectly.

Consider	 the	 related	problem	of	 testing	 H Hj
m

j0 1 0:= =∩ .	Typically	m>>n	 and	
standard	multivariate	methods	are	not	appropriate.	However,	one	can	 test	H0	by	
resampling

T T
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Troendle,	Korn	 and	McShane	 (2004)	 compared	 two	 types	of	 bootstraps,	 a	
“within-sample”	bootstrap,	and	a	“pooled-sample”	bootstrap,	as	well	as	permutation	
resampling,	 to	 estimate	 the	null	distribution	of	T.	The	“within-sample”	method	
makes	no	assumptions	on	 the	distributions	FX	 and	FY	other	 than	 finite	variances,	
the	“pooled	sample”	assumes	additionally	 that	FX	 and	FY	differ	only	 in	 location,	
and	 the	 permutation	method	 assumes	 that	 H0	 implies	 that	 the	 distribution	 of	

X X Y Y1 ,..., , ,...,n 1x ny{ } 	is	exchangeable.	The	latter	two	models	imply	that	the	“subset	
pivotality”	assumption	holds	(see	Ge	et	al.	 in	 this	 issue	and	Westfall	and	Troendle	
(2008),	for	details	on	the	subset	pivotality	assumption).	Troendle	et	al.’s	finding	was	
that	the	type	I	error	rate	for	the	“within-sample”	method	was	far	from	nominal	levels	
for	typical	genomic	applications	with	small	n,	 large	m,	 in	the	0.001–0.006	range	for	
a	nominal	α	=0.05	test.	Type	I	error	rate	was	somewhat	large	for	the	pooled	sample	
method,	0.077–0.101,	and	nearly	exact	for	the	permutation	method.	Because	the	within	
sample	method	had	such	low	true	Type	I	error	rates,	it	suffered	great	power	loss,	0.26	
–0.56	compared	to	0.83–0.86	for	 the	pooled	bootstrap	and	0.79	for	 the	permutation	
method.

The	conclusion	is	well	known	─	assumptions	can	help	greatly.	On	the	other	hand,	
it	is	true	that	when	the	assumptions	are	badly	violated,	the	pooled	method	can	behave	
poorly	(Westfall,	(2003)).
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Figure	1:	Three	loss	functions	as	indicated	in	1.a.,	Waller-Duncan,	1.b.,	0-1	
Loss,	and	1.c.,	specialized.	Loss	for	claiming	a	negative	θ	is	a	dotted	line,	loss	
for	claiming	θ	not	scientifically	different	from	0	is	solid.
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4. Loss Functions and Decisions

Assumptions	are	unavoidable,	and	are	 in	 fact	desirable	 for	decision-making.	
For	ROC	analysis,	Vickers	(2008)	discusses	accuracy	metrics	such	as	error	rates	and	
AUC,	and	concludes	that	we	need	to	go	one	step	farther	and	assume	specific	losses	(or	
equivalently,	benefits,	in	Vickers’	analysis),	so	that	the	resulting	decision	can	be	called	
“best.”	For	hypothesis	testing,	Figure	1	shows	examples	of	loss	functions	applicable	to	
the	problem	of	determining	sign	of	θ,	whether	positive,	negative,	or	not	scientifically	
different	 from	0.	Historically,	 these	 loss	 functions	have	been	chosen	 for	analytic	
tractability;	examples	include	the	Waller-Duncan	loss	functions	shown	in	Figure	1.a	
(Waller	and	Duncan,	(1969)),	and	the	0-1	loss	functions	shown	in	Figure	1.b.	(Lewis	
and	Thayer,	(2004)).	Tractability	is	not	an	issue	with	modern	Bayesian	methods,	as	
one	can	simulate	from	the	posterior	distribution	of	θ,	plug	into	the	loss	functions,	and	
select	 the	action	with	 the	minimum	average	 loss;	an	example	 is	given	 in	Westfall,	
Tobias,	Rom,	Wolfinger,	and	Hochberg	 (1999,	pp.	278-281).	 In	 the	case	of	gene	
expression	data,	“loss	to	science”	in	terms	of	speed	to	discovery	might	 take	a	more	
exotic	form,	such	as	in	Figure	1.c.	Identifying	reasonable	loss	functions	will	require	
much	discussion	and	consensus	among	scientists	and	statisticians.

When	decision	 rules	are	 framed	 in	 terms	of	 losses,	 insights	are	gained.	For	
example,	 familywise	error	 rate	 (FWER)	controlling	methods	 that	 are	generally	
considered	inappropriate	for	large-scale	multiple	testing	are	optimal	for	certain	kinds	
of	loss	functions	(Lu	and	Westfall	(2008)),	and	the	usual	multiple	testing	methods	are	
inadmissible	relative	 to	a	recent	proposal	of	Efron	(2004)	as	n→∞.	But	ultimately,	
the	goal	will	be	to	advance	science,	again,	by	answering	the	question	“Which	method	
is	best?”	as	directly	as	possible,	using	strong	but	defensible	assumptions	concerning	
losses	and	priors.

5. Conclusion

It	 is	my	pleasure	 to	comment	on	 this	 special	 issue	with	 the	unifying	 theme	
“decision-making.”	Hopefully	 it	will	 spur	continued	 research	 in	how	 to	provide	
scientists	with	the	best	tools	for	making	decisions	using	their	data.
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